INVARIANT SUBMODELS OF RANK TWO
 OF THE EQUATIONS OF GAS DYNAMICS

E. V. Mamontov

Abstract

Invariant submodels of rank two of systems of gas-dynamic equations with a general equation of state are described. All submodels (26 representatives) are divided into two classes evolutionary and stationary. New relations and independent variables and the coefficients and right sides of the corresponding systems of equations are given.

As is known [1], a system of gas-dynamic equations with a general equation of state admits the 11parameter Lie group. The basis of the corresponding Lie algebra is formed by the operators

$$
\begin{gathered}
X_{1}=\partial_{x}, \quad X_{2}=\partial_{y}, \quad X_{3}=\partial_{z}, \quad X_{4}=t \partial_{x}+\partial_{u}, \quad X_{5}=t \partial_{y}+\partial_{v}, \quad X_{6}=t \partial_{z}+\partial_{w}, \\
X_{7}=y \partial_{z}-z \partial_{y}+v \partial_{w}-w \partial_{v}, \quad X_{8}=z \partial_{x}-x \partial_{z}+w \partial_{u}-u \partial_{w}, \\
X_{9}=x \partial_{y}-y \partial_{x}+u \partial_{v}-v \partial_{u}, \quad X_{10}=\partial_{t}, \quad X_{11}=t \partial_{t}+x \partial_{x}+y \partial_{y}+z \partial_{z} .
\end{gathered}
$$

The optimal system of subalgebras is constructed and given in [2, Table 6].
In the present paper, the invariant submodels of rank two of systems of gas-dynamic equations are analyzed within the framework of the SUBMODEL program. All such submodels (27 representatives) are obtained for two-parameter subgroups that correspond to the subalgebras $L_{2, l}$ from Table 6 of [2] (below, the numbering from Table 6 is used in references to the corresponding submodel).

Following [3], all the submodels considered (except for the partially invariant submodel 2.26) are reduced to one of the two systems. A system of equations of the evolutionary type (type E) has the form

$$
\begin{aligned}
& U_{t}+U U_{\xi}+\frac{b_{1}}{R} P_{\xi}=a_{1}, \quad V_{t}+U V_{\xi}=a_{2}, \quad W_{t}+U W_{\xi}=a_{3}, \\
& R_{t}+U R_{\xi}+R U_{\xi}=R a_{4}, \quad P_{t}+U P_{\xi}+A(R, P) U_{\xi}=A(R, P) a_{4},
\end{aligned}
$$

where $b_{1}=b_{1}(t, \xi)$, the functions a_{i} do not contain derivatives of the required functions, $A=R c^{2}$, and $c=c(R, P)$. The characteristics are given by the equality $(d \xi-U d t)^{3}\left(R d \xi^{2}-2 R U d \xi d t+\left(R U^{2}-A b_{1}\right) d t^{2}\right)=0$. According to the sense of the problem, $A>0$ and $R>0$, and it turns out that $b_{1}>0$. Therefore, all the characteristics are real.

A system of equations of the stationary type (type S) has the form

$$
\begin{gathered}
U U_{\xi}+V U_{\eta}+\frac{1}{R} b_{11} P_{\xi}=a_{1}, \quad U V_{\xi}+V V_{\eta}+\frac{1}{R} b_{22} P_{\eta}=a_{2}, \\
U W_{\xi}+V W_{\eta}+\frac{1}{R}\left(b_{31} P_{\xi}+b_{32} P_{\eta}\right)=a_{3}, \quad U R_{\xi}+V R_{\eta}+R\left(U_{\xi}+V_{\eta}\right)=R a_{4}, \\
U P_{\xi}+V P_{\eta}+A(R, P)\left(U_{\xi}+V_{\eta}\right)=A(R, P) a_{4},
\end{gathered}
$$

where $b_{i j}=b_{i j}(\xi, \eta)$, and the functions a_{i} do not contain derivatives of the required functions.

TABLE 1

Submodel	Coordinate system	Subalgebra basis	ξ
2.8	C	X_{4}, X_{7}	r
2.9	C	$X_{1}, \beta X_{4}+X_{7}$	r
2.10	C	$X_{4}, X_{1}+X_{7}$	r
2.20	D	$\alpha X_{1}+\sigma X_{3}+X_{5}, \beta X_{1}+\tau X_{2}+X_{6}$,	$x+\frac{\beta \sigma-\alpha t}{t^{2}-\sigma \tau} y+\frac{\alpha \tau-\beta t}{t^{2}-\sigma \tau} z$
		$\alpha^{2}+\beta^{2}+(\sigma+\tau)^{2}=1$	
2.21	D	$X_{3}+X_{5}, X_{2}-X_{6}$	x
2.22	D	X_{5}, X_{6}	x
2.23	D	$\alpha X_{1}+X_{2}, X_{3}+X_{4}$	$x-\alpha y-t z$
2.24	D	$\alpha X_{1}+X_{2}, X_{4}$	z
2.25	D	$X_{1}, X_{3}+X_{4}$	y
2.27	D	X_{2}, X_{3}	x

TABLE 2

Submodel	U	V	W
2.8	v	$u-x / t$	w
2.9	v	$u-\beta \theta$	w
2.10	v	$u+(\theta-x) / t$	w
2.20	$u+\frac{\beta \sigma-\alpha t}{t^{2}-\sigma \tau} v+\frac{\alpha \tau-\beta t}{t^{2}-\sigma \tau} w+$	$v+\frac{\alpha t-\beta \sigma}{t^{2}-\sigma \tau} u+\frac{\tau z-t y}{t^{2}-\sigma \tau}$	$w+\frac{\beta t-\alpha \tau}{t^{2}-\sigma \tau} u+$
	$+\frac{\sigma y-t z}{t^{2}-\sigma \tau}$		
2.21	$u-\alpha t)(\tau z-t y)+(\alpha \tau-\beta t)(\sigma y-t z)$		$t v-w-y$
2.22	u	$v+t w-z$	$w-z / t$
2.23	$u-t w-z$	$v-y / t$	$t u+w-t z$
2.24	w	$\alpha u+v-\alpha z$	v
2.25	v	$u-x / t+\alpha(y / t)$	$w-z$
2.27	u	v	w

The characteristics are defined by the equality

$$
(V d \xi-U d \eta)^{3}\left(\left(R U^{2}-A b_{11}\right) d \eta^{2}-2 R U V d \xi d \eta+\left(R V^{2}-A b_{22}\right) d \xi^{2}\right)=0
$$

The first factor specifies three real families of characteristics. The second factor gives real characteristics if $\delta=b_{22} U^{2}+b_{11} V^{2}-b_{11} b_{22} c^{2} \geqslant 0$, and it gives complex characteristics if $\delta<0$.

Systems of equations of the evolutionary type are obtained from submodels 2.8-2.10, 2.20-2.25, and 2.27, and systems of equations of the stationary type are obtained from submodels 2.1-2.7 and 2.11-2.19.

The corresponding dependent and independent variables and the coefficients and right sides of the resultant systems of differential equations for all submodels are given in Tables 1-6 (R and P are functions of ρ and p in the new variables). The initial system of gas-dynamic equations is written in Cartesian coordinates (the coordinate system D) or in cylindrical coordinates (the coordinate system C).

The author is grateful to L. V. Ovsyannikov and the participants of the SUBMODEL program S. V. Khabirov, A. P. Chupakhin, S. V. Golovin, and A. A. Cherevko for useful discussions of the paper.

This work was supported by the Russian Foundation for Fundamental Research (Grant No. 96-0101780) and the Program "The Leading Scientific Schools" (Grant No. 96-15-96283)
TABLE 3

Submodel	b_{1}	a_{1}	a_{2}	a_{3}	a_{4}
2.8	1	$(1 / \xi) W^{2}$	$-(1 / t) V$	$-(1 / \xi) U W$	$-\left(\frac{1}{\xi} U+\frac{1}{t}\right)$
2.9	1	$(1 / \xi) W^{2}$	$-(\beta / \xi) W$	$-(1 / \xi) U W$	$-(1 / \xi) U$
2.10	1	$(1 / \xi) W^{2}$	$(W-\xi V) / t \xi$	$-(1 / \xi) U W$	$-\left(\frac{1}{\xi} U+\frac{1}{t}\right)$
2.20	$1+\left(\frac{\beta \sigma-\alpha t}{t^{2}-\sigma \tau}\right)^{2}+\left(\frac{\alpha \tau-\beta t}{t^{2}-\sigma \tau}\right)^{2}$	$\begin{aligned} & \frac{\sigma(\alpha \tau-\beta t)}{\left(t^{2}-\sigma \tau\right)^{2}} V+\frac{t(\alpha t-\beta \sigma)}{t^{2}-\sigma \tau} V+ \\ & +\frac{\tau(\alpha \tau-\beta t)}{\left(t^{2}-\sigma \tau\right)^{2}} W+\frac{t(\beta t-\alpha \tau)}{\left(t^{2}-\sigma \tau\right)^{2}} W \end{aligned}$	$-\frac{t}{t^{2}-\sigma \tau} V+\frac{\tau}{t^{2}-\sigma \tau} W$	$\frac{\sigma}{t^{2}-\sigma \tau} V-\frac{t}{t^{2}-\sigma \tau} W$	$\frac{2 t}{-t^{2}-\sigma \tau}$
2.21	1	0	0	0	$-2 t /\left(1+t^{2}\right)$
2.22	1	0	$-(1 / t) V$	$-(1 / t) W$	-2/t
2.23	$1+\alpha^{2}+t^{2}$	$2 \frac{t U+\alpha t V}{1+\alpha^{2}+t^{2}}-2 \frac{\left(1+\alpha^{2}\right) W}{1+\alpha^{2}+t^{2}}$	$\alpha \frac{t U+\alpha t V}{1+\alpha^{2}+t^{2}}-\alpha \frac{\left(1+\alpha^{2}\right) W}{1+\alpha^{2}+t^{2}}$	$\begin{gathered} \frac{\left(1+t^{2}\right) U}{1+\alpha^{2}+t^{2}}+\frac{\alpha\left(1+t^{2}\right) V}{1+\alpha^{2}+t^{2}}- \\ -\alpha^{2} t W /\left(1+\alpha^{2}+t^{2}\right) \end{gathered}$	0
2.24	1	0	$-(1 / t) V+(\alpha / t) W$	0	$-1 / t$
2.25	1	0	-W	0	0
2.27	1	0	0	0	0

TABLE 4

Submodel	Coordinate system	Subalgebra basis	ξ		
2.1	C	$X_{10}, X_{7}+\alpha X_{11}, \alpha \neq 0$	r / x	$\mathrm{e}^{-2 \alpha \theta}\left(x^{2}+r^{2}\right)$	$\mathrm{e}^{\alpha \theta}(x v-r u) / x^{2}$
2.2	C	$\alpha X_{4}+X_{7}, \beta X_{4}+X_{11}$	r / t	$x-\alpha \theta-\beta \ln \|t\|$	$v-r / t$
2.3	C	$X_{4}, X_{7}+\alpha X_{11}, \alpha \neq 0$	$t \mathrm{e}^{-\alpha \theta}$	r / t	$1-(\alpha t / r) w$
2.4	C	$X_{1}, \beta X_{4}+X_{7}+\alpha X_{11}, \alpha \neq 0$	r / t	$\theta-(1 / \alpha) \ln \|t\|$	$v-r / t$
2.5	C	X_{7}, X_{10}	x	r	u
2.6	C	$X_{1}+X_{7}, X_{10}$	r	$x-\theta$	v
2.7	C	$\alpha X_{1}+X_{7}, X_{4}+X_{10}$	r	$x-(1 / 2) t^{2}-\alpha \theta$	v
2.11	C	$X_{1}, \beta X_{4}+X_{7}+X_{10}$	$\theta-t$	r	$v / r-1$
2.12	D	X_{10}, X_{11}	z / y	$\left(y^{2}+z^{2}\right) / x^{2}$	$\left(x / y^{2}\right)(y w-z v)$
2.13	D	X_{4}, X_{11}	z / t	$v-y / t$	
2.14	D	$X_{4}, \alpha X_{5}+X_{11}, \alpha \neq 0$	$y / t-\alpha \ln \|t\|$	z / t	$v-y / t-\alpha$
2.15	D	$X_{1}, \beta X_{4}+\alpha X_{5}+X_{11}, \alpha \neq 0$	$y / t-\alpha \ln \|t\|$	z / t	$v-y / t-\alpha$
2.16	D	$X_{1}, \beta X_{4}+X_{11}$	y / t	z / t	$v-y / t$
2.17	X_{1}, X_{10}	y	z	v	
2.18	D	$X_{3}, X_{4}+\alpha X_{6}+X_{10}$	$x-t^{2} / 2$	y	$u-t$
2.19	D	$X_{1}, X_{4}+X_{10}$	y	z	v

TABLE 5

Submodel	V	W	b_{11}	b_{22}	b_{31}
2.1	$(2 / r) \mathrm{e}^{-\alpha \theta}\left(x r u+r^{2} v-\alpha\left(x^{2}+r^{2}\right) w\right)$	w	$\left(1+\xi^{2}\right)^{2} / \eta$	$4 \eta\left(1+\alpha^{2}\left(1+1 / \xi^{2}\right)\right)$	0
2.2	$u-x / t-(\alpha t / r) w-\beta$	w	1	$1+\alpha^{2} / \xi^{2}$	0
2.3	$(1 / t)(v-r / t) \mathrm{e}^{\alpha \theta}$	$u-x / t$	α^{2} / η^{2}	$1 / \xi^{2}$	0
2.4	$(t / r) w-1 / \alpha$	$u-\beta \theta$	1	$1 / \xi^{2}$	0
2.5	v	w	1	1	0
2.6	$u-(1 / r) w$	w	1	$1+1 / \xi^{2}$	0
2.7	$u-t-(\alpha / r) w$	w	1	$1+\alpha^{2} / \xi^{2}$	0
2.11	v	$u-\beta t$	$1 / \eta^{2}$	1	0
2.12	$w-z / t$	u	$\left(1+\xi^{2}\right)^{2} / \eta$	$4 \eta(1+\eta)$	0
2.13	$w-z / t$	$u-x / t$	1	1	0
2.14	$w-z / t$	$u-x / t$	1	1	0
2.15	$w-z / t$	$u-\beta \ln \|t\|$	1	1	0
2.16	w	$u-\beta \ln \|t\|$	1	1	0
2.17	v	u	1	1	0
2.18	$\left.w v+x z w-\left(y^{2}+z^{2}\right) u\right)$	1	0		
2.19	$w-\alpha t$	1	1	0	

TABLE 6

Submodel	b_{32}	a_{1}	a_{2}	a_{3}	a_{4}
2.1	$-2 \alpha\left(\sqrt{\left(1+\xi^{2}\right) \eta} / \xi\right)$	$\frac{2 \xi}{1+\xi} U^{2}-\frac{1}{\eta} U V-U W$	$2 \frac{\eta}{\left(1+\xi^{2}\right)^{2}} U^{2}+\frac{1}{2 \eta} V^{2}-V W$	$-\frac{1}{\xi\left(1+\xi^{2}\right)} U W-\frac{1}{2 \eta} V W$	$\frac{2 \xi^{2}-1}{\xi\left(1+\xi^{2}\right)} U-\frac{1}{2 \eta} V-\frac{2 \alpha}{\xi} \sqrt{\frac{1+\xi^{2}}{\eta}} W$
2.2	$-\alpha / \xi$	$-U+(1 / \xi) W^{2}$	$-\beta-V-\frac{\alpha}{\xi} W+2 \frac{\alpha}{\xi^{2}} U W$	$-W-(1 / \xi) U W$	$-3-(1 / \xi) U$
2.3	0	$(1-U)\left(\frac{1}{\xi}+\frac{2}{\eta} V\right)$	$-\frac{1}{\xi} V-\frac{1}{\xi} U V+\frac{\eta}{\xi^{2} \alpha^{2}}(1-U)$	$-(1 / \xi) W$	$-3 / \xi-(1 / \eta) V$
2.4	0	$\frac{\xi}{\alpha^{2}}-U+\xi\left(\frac{2}{\alpha}+V\right) V$	$-\left(2 \frac{\partial}{\xi}+1\right)\left(V+\frac{1}{\alpha}\right)$	$-\beta / \alpha-\beta V$	$-(2+U / \xi)$
2.5	0	$(1 / \eta) W^{2}$	$-(1 / \eta) V W$	$-(1 / \eta) V$	
2.6	0	$(1 / \xi) W^{2}$	$\left(2 / \xi^{2}\right) U W$	$-(1 / \xi) U W$	$-(1 / \xi) U$
2.7	$-1 / \xi$	$(1 / \xi) W^{2}$	$\left(2 \alpha / \xi^{2}\right) U W-1$	$-(1 / \xi) U W$	$-(1 / \xi) U$
2.11	$-\alpha / \xi$	$-(2 / \eta) V(U+1)$	$\eta(U+1)^{2}$	$-(1 / \eta) V$	
2.12	0	-2η	$-\frac{1}{\eta} U V+\frac{2 \xi}{1+\xi^{2}} U^{2}-U W$	$\frac{2 \eta}{\left(1+\xi^{2}\right)^{2}} U^{2}+\frac{1}{2 \eta} V^{2}-V W$	$-\beta$
2.13	$-U$	$-V$	0	$\frac{2 \xi}{1+\xi^{2} U-2 W}$	
2.14	0	$-(U+\alpha)$	$-V$	$-W$	-3
2.15	0	$-(U+\alpha)$	$-V$	$-W$	-3
2.16	0	$-U$	$-V$	$-\beta$	-2
2.17	0	0	0	$-\beta$	-2
2.18	0	0	0	$-\alpha$	0
2.19	0	0	0	-1	0

REFERENCES

1. L. V. Ovsyannikov, Group Analysis of Differential Equations [in Russian], Nauka, Moscow (1978).
2. L. V. Ovsyannikov, "The SUBMODEL Program. Gas dynamics," Prikl. Mat. Mekh., 58, No. 4, 30-55 (1994).
3. S. V. Khabirov, "Analysis of invariant submodels of rank three of gas-dynamic equations," Dokl. Ross. Akad. Nauk, 341, No. 6, 764-766 (1995).
